

Effective from Session: 2024-25										
Course Code	ME309	Title of the Course	Machine Design Lab	L	Т	Р	С			
Year	Ш	Semester	V	0	0	2	1			
Pre-Requisite	None	Co-requisite	None							
Course Objectives	 To impart To design of To impart of 	and apply basic design a complex machines parts design for important joir	y of design methodologies. approach on simple members such as shafts, keys etc. like coupling, screw jack and springs. nts like welded joints, riveted joints etc. under static and dyn Designing, drafting and solid modelling softwares methods			es				

	Course Outcomes						
CO1	The student can understand the concepts of static analysis applied on shafts						
CO2	Understand design and applications of mechanical fasteners and joints such as screwed joints and riveted joints.						
CO3	Understand the design and drawing of a welded joint, knuckle joint/ cotter joint.						
CO4	The student can design complex machines parts like coupling, screw jack and springs using software programming						
CO5	The student can draw machine parts using different drafting and modelling softwares.						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to SOLID MODELING TOOLS	Study and practice various SOLID MODELING TOOLS using various commands.	2	CO1, CO5
2	Design and drawing of Riveted Joints	Demonstrate basic design approach and SOLID MODELING TOOL commands for Riveted Joints.	2	CO2, CO5
3	Design and drawing eccentrically loaded welded joints	Demonstrate basic design approach and SOLID MODELING TOOL commands for eccentrically loaded welded joints.	2	CO2, CO3
4	Design of stepped shaft	Demonstrate basic design approach and SOLID MODELING TOOL commands of shaft for different loading conditions.	2	CO1, CO2
5	Design and drawing of rigid coupling (flanged type).	Demonstrate basic design approach and SOLID MODELING TOOL commands of rigid coupling (flanged type).	2	CO4, CO5
6	Design of spline keys	Demonstrate basic design approach and SOLID MODELING TOOL commands for spline keys.	2	CO5
7	Introduction to SOFTWARE PROGRAMMING	Study and practice using SOFTWARE programming codes.	2	CO4, CO5
8	Design and drawing of a helical spring/	Demonstrate basic design approach using SOFTWARE programming.	2	CO4, CO5
9	Design and drawing of Rotating shafts	Demonstrate basic design approach using SOFTWARE programming.	2	CO1, CO2
10	Design of leaf spring for a given application.	Demonstrate basic design approach and Auto-Cad commands of a leaf spring for a given application.	2	CO4, CO5
11	Design and drawing of a Screw Jack	Demonstrate basic design approach and Auto-Cad commands of screw Jack for a given application.	2	CO4, CO5
Referen	nce Books:			
Data I	Design Hand book by Mahadev	/an		
Desig	n of machine Elements by Bha	ndari		
e-Lea	rning Source:			
<u>https:</u>	://www.youtube.com/watch?v	=1y2Vec5XdXg&list=PLBY9jx3ikVaM00Va4Zrnu4neTPRj6zuQb		
https:	//www.youtube.com/watch?v	=EgKc9L7cbKc&list=PLC3EE33F27CF14A06		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
СО															
CO1	3	2	3	2	1	3			1	2		3	3	1	3
CO2	3	3	3	2	2	3			1	2		3	3	2	3
CO3	3	2	3	2	1	3			2	2		3	3	2	3
CO4	3	2	3	2	2	3			3	2		3	3	2	3
CO5	3	3	3	2	3	3			3	2		3	3	1	3

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Session: 2024	-25						
Course Code	ME401	Title of the Course	Industrial Engineering	L	Т	P	С
Year	IV	Semester	VII	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	integrated sys operations an necessary to increasingly of	tems that include people d project management to adapt to our changing s complex problems faced	nies through effective problem solving. Design, develop, i e, materials, information, equipment, and environments \cdot Effe eams. \cdot Continue to develop holistically, including the person ocietal, technological, and global environments \cdot To be abl l by industry; embrace innovation through intellectual diver- ntinue to develop holistically as a learner to become leaders	ectivel al and e to a sity	y mana profess dapt an	ge busii sional sl	ness kills

	Course Outcomes					
CO1	Apply knowledge and understanding of productivity models in various industries. Design and develop the products and processes. Apply basic knowledge of product development and industrial process design.					
CO2	Analyze the facility location and network models. Understanding of supply chain system.					
CO3	Interpretation and analysis of data from aggregate output planning models. Knowledge and understanding of Human Factors Engineering and various job design techniques.					
CO4	Select and analyze an inventory control model. Understanding of manufacturing resources and queuing systems.					
CO5	Analyze and control the quality of an end product. Analysis of industrial systems using linear and non-linear programming approaches.					

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction	Introduction : Concept of Industrial Engineering, Functions of Industrial Engineering, Industrial Engineering techniques, Role of an Industrial Engineer. Applications of Industrial Engineering. 4 Production and Productivity : Concept of production, production function, production system, Definition of productivity, Difference between productivity and production, Productivity, efficiency and effectiveness. Measurement of productivity, Types of productivity, productivity index, ways to improve productivity. Industry 4.0 introduction.	8	COI
2	Job Evaluation and Merit Rating	Job Evaluation and Merit Rating : Concept of job evaluation, job analysis, job description, job simplification, job evaluation methods, Definition and methods of merit rating, wage-incentive payment plans. Plant Layout and Materials Handling: Considerations in plant location, Definition of plant layout, types of layout, Principle of plant layout, Material, handling, Material handling equipments. Production Planning and Control (PPC) Objectives of PPC, Functions of PPC, production planning, steps in PPC, effectiveness of PPC system.	8	CO2
3	Depreciation and Replacement	Depreciation and Replacement : Concept of depreciation and obsolescence, Classifications of depreciation, Methods of charging depreciation, Service life of an asset, Replacement of items which deteriorate with time. Inventory Control : Inventory, function of inventory, inventory costs, Inventory models. Statistical Quality Control: Introduction, Process control, Control charts, acceptance plan, acceptance sampling, single, Double and sequential Sampling plans, concept of average outgoing quality.	8	CO3
4	Industrial Ownership	Industrial Ownership: Introduction, Sole proprietor enterprise, partnership firm, joint stock company, Classification of company, Comparison of Public, Private and Joint sector, Cooperative organization. Factory Legislation in India : Importance and principles of Labour legislation, Factory Act, Payment of wages Act, Minimum wages Act, Workmen's compensation Act, Employee's State Insurance Act.	8	CO4
5	Break-Even- Analysis	Break-Even-Analysis : Introduction and purpose of BEA, Assumptions, Steps in BEA, Fixed Cost, Variable cost, Margin of safety. Brief Introduction of the Following Terms: Concept of optimization, Supply Chain Management, Plant Maintenance, Concept of value engineering, Total quality management, Management of Projects	8	CO5
	nce Books:			
	8 8	: M.I. Khan, New-Age Int.		
2.	e e	g and Management: O.P. Khanna, Dhanpat Rai		
		ment, An Analysis of Management Fuction: H.Kontz and C.D. Donnel		
		gement: J.Moore, Prentice Hall.		
	rning Source: //www.youtube.com/wa	tch?v=yhywrCChJBQ&list=PLLy_2iUCG87D5n9zraFS2QYajk0OAOIVK		
<u>https:/</u>	//www.youtube.com/wa	tch?v=vYIVumq6sVM&list=PL299B5CC87110A6E7		
https:/	//www.youtube.com/wa	tch?v=r-o86V4zcMM&list=PLbjTnj-t5Gkl0z3OHOGK5RB9mvNYvnImW		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	2	1					3	3	2	3
CO2	3	3	3	2	2	3	1					2	3	3	2
CO3	3	3	2	2	2	3						2	3	2	3
CO4	3	2	2	2	3	3	1					2	3	3	2
CO5	3	1	1	1	1	3						2	3	2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2024	1-2025						
Course Code	ME402	Title of the Course	CAD & CAM	L	Т	Р	С
Year	IV	Semester	VII	3	1	0	4
Pre-Requisite	NONE	Co-requisite	NONE				
Course Objectives	 Uno Get Lea 	lerstand the fundamenta acquainted with the bas rn working principles or	computer aided design / manufacturing, IoT for manufactur Is used to create and manipulate geometric models sic CAD software designed for geometric modeling f CNC machines CNC control and part programming S and CIM ,Industrial application of Robots and 3D Printer.	U	erical M	ethods.	

	Course Outcomes
CO1	Introduction of CAD & CAM and IoT for manufacturing, MATLAB Program
CO2	Acquire the knowledge of geometric modeling and Execute the steps required in CAD software for developing 2D and 3D models and perform
	transformations
CO3	Explain fundamental and advanced features of CNC machines
CO4	Explain Flexible manufacturing Group Technology, CAQC and CIM concepts, Applications of Robots in Manufacturing, 3D Printer
CO5	Know about the Concept of Numerical Methods required in CAM for Optimization.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction of CAD & CAM , Smart manufacturing	Introduction and Review of Computer Programming : Introduction to CAD/CAE, Elements of CAD, Concepts of integrated CAD/CAM, CAD Engineering applications, its importance and necessity. IoT for manufacturing. IoT enabling technologies, Introduction to MATLAB; Multiplication, addition, subtraction and division. Utility and application. Functions and 2D plots.	8	CO1
2	Computer Graphics	Computer Graphics Graphics software, Graphics functions, output primitives-Bresenham's line drawing and Mid-point circle algorithms. Geometric Transformations: Word/device co-ordinate representations, 2D and 3D geometric transformations, Matrix representations-translation, scaling, shearing, rotation and reflection, composite transformations, concatenation about arbitrary axis. Exercise and programs	8	CO2
3	Introduction to CNC Machines and Part Programming	 Introduction to CNC Machines: Introduction to Automation, Need and future of NC systems and CAM; Advantages and disadvantages; Classification; Open and closed loop systems; Historical development and future trends. Interpolators: Principle, Digital Differential Analyzers; Linear interpolator, Circular Interpolator and its software. Control of NC Systems: Open and closed loops. Automatic control of closed loops with encoder and tachometers; Speed variation of DC motor; Adaptive control. CNC Part programming: (a) Manual (word address format) programming; Examples Drilling and Milling. (b) APT programming. Geometry, Motion and Additional statements, Macro-statement 	8	CO3
4	Flexible Manufacturing System	Flexible Manufacturing System: Group Technology, Manufacturing cell, Transfer lines, FMS, CIM, CAD/CAM, CAPP,, Concept of Mechatronics, 3D Printer use & industrial applications Storage and Data capturing systems: Conventional storage methods and equipment, Storage system performance, Analysis of Automated storage/retrieval systems (ASRS). Introduction Industrial Robots: Types of industrial robots, Load handling capacity, general considerations in Robotic material handling, material transfer, machine loading and unloading, CNC machine tool loading, Robot centered cell. Applications of Robots in Manufacturing.	8	CO4
5	Numerical Methods	Numerical Methods : Newton Raphson method, Interpolation Lagrange and Newton's interpolation, Curve fitting-Least Square method Numerical integration-Trapezoidal and Simpson Method. Finite Element Methods: Introduction and Application of FEM, Stiffness Matrix/Displacement Matrix, One/Two Dimensional bar and beam element (as spring system) analysis.	8	CO5
	ce Books:	1		
1. Con	nputer Graphics: Hearn	and Baker (Pearson/Prentice hall) Yoram Koren, "Robotics for Engineers", McGraw Hill Book	Co.	

2. Computer Aided Design : R.K. Srivastava

3. Computer Graphics, Theory and Practice: Foley, Van Dam, Feiner, (Pearson Education)

 CAD/CAM, Theory and practice: Ibrahim Zeid (McGraw Hill International) M. P. Groover, "Automation, Production Sysytems, and Computer – Integrated Manufacturing", Pearson Education, ISBN-81-7808-511-9

5. Computer Aided Analysis and Design of Machine Elements: (Rao and Dukkipati)

6. Mathematical Elements for Computer Graphics: Rogers and Adams (McGraw Hill)

CAD/CAM : Groover and Zimmers (Prentice Hall of India Pvt. Ltd.) Deb S.R., "Robotics", Tata McGraw Hill Publications, New Delhi.
 Computer Oriented Numerical Methods: Rajaraman (Prentice Hall)

e-Learning Source:

https://www.youtube.com/watch?v=EgKc9L7cbKc&list=PLC3EE33F27CF14A06

https://www.youtube.com/watch?v=1gDmNDJ9SHc&list=PL1F857AA89C464B15

https://www.youtube.com/watch?v=sp7JwktN9fo

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	1	2	2	1	3	1	1	2	3	3	2	2
CO2	3	3	3	1	2	3	1	1	2	1	2	3	3	2	3
CO3	3	3	3	2	2	3	1	2	2	1	2	3	3	3	2
CO4	2	3	3	2	2	3	3	1	1	2	3	1	3	3	3
CO5	3	3	2	2	3	3	2	1	1	1	3	2	2	3	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2024	4-2025						
Course Code	ME405	Title of the Course	Unconventional Manufacturing Process	L	Т	Р	С
Year	IV	Semester	VII	3	1	P C 0 4	
Pre-Requisite	Manufacturing science 1	Co-requisite	Nil				
Course Objectives	 To class To anal 	sify and analyze var lyze material remov	different types of modern Machining techniques. ious nun conventional machines and their applications. al mechanism in different unconventional machining proces volved in efficient working of the unconventional machining				

	Course Outcomes
CO1	The students will understand the principle, working and applications of unconventional machining process, need of unconventional
	manufacturing processes & its classification and its future possibilities.
	The students will know the principle and working and application of unconventional machining processes like Electro-Discharge
	machining, Electrochemical machining and Abrasive Jet Machining
CO2	The students will learn the principle and working and application of unconventional machining processes like Laser beam machining,
	Electron beam machining
CO3	Know the principle and working and application of Unconventional welding processes, Under water welding, Cladding.
CO4	Know the principles, working and applications of High energy forming processes such as Explosive Forming, Electromagnetic forming,
	Electro-Discharge forming, water hammer forming, explosive compaction
CO5	Know the principles, working and applications of 3D printing technologies and photolithography.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Unconventional Machining Process	Limitations of conventional manufacturing processes Need of unconventional manufacturing processes, its classification and future possibilities. Principle, working and applications of unconventional machining processes. Electro-Discharge machining, Wire EDM process, Electrochemical machining, Abrasive jet machining Abrasive Water jet Machining	8	CO1
2	Unconventional Machining Process (continued):	Principle, working and application of unconventional machining processes, Laser beam machining, Laser jet Machining, Electron beam machining, Ultrasonic machining	8	CO2
3	Unconventional welding processes	Principle and working and application of unconventional welding processes, Explosive welding Cladding : Different techniques of Cladding Under water welding Wet and Dry Welding Metalizing, Plasma arc welding	8	CO3
4	Unconventional Forming processes	Principle, working and applications of High energy forming processes such as Explosive Forming, Electromagnetic forming, Hydro forming process Electro-Discharge forming, water hammer forming, explosive compaction etc	8	CO4
5	3D printing Technologies, Electronic-device Manufacturing:	Types of 3D printers. 3D printing materials, Classification of printing techniques, Rapid prototyping. Brief description of Diffusion and Photo- Lithography process for electronic-device manufacturing.	8	CO5
	nce Books:			
Modern	Machining Processes – P.	C. Pandey		
Unconv	rentional Machining – V.K	. Jain		
e-Lea	rning Source:			
https:	://www.youtube.com/wate	ch?v=cxU1zUOpGLk&list=PLtpJfjyaifnmCI-JcNxs6uQgv3b2WYKzS		
https:	://www.youtube.com/wato	ch?v=tpv1Iza90_o&list=PL0TzZgFtsAPFRqV3wwY9InMHQROYe_gpt		
https:	//www.youtube.com/watc	h?v=EgKc9L7cbKc&list=PLC3EE33F27CF14A06		

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of COs	with POs and PSO	Os)		
PO-																
PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
СО																
CO1	3	3	3	3	3	2	2	2	1	1	1	2	3	2	3	

CO2	3	3	3	3	3	2	2	2	1	1	1	2	3	3	3
CO3	3	3	3	3	3	2	2	2	1	1	1	2	3	3	3
CO4	3	3	3	3	3	2	2	2	1	1	1	2	3	3	3
CO5	3	3	3	3	3	2	2	2	1	1	1	2	3	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 20	024-2025						
Course Code	ME408	Title of the Course	MECHANICAL SYSTEMS DESIGN	L	Т	P	С
Year	IV	Semester	VII	3	1	0	4
Pre-Requisite	NONE	Co-requisite	NONE				
Course Objectives	eng 2. To 3. To 4. To	ineering, Problem for know about system th impart knowledge abo understand system ev	about system concept of engineering, role of engineer rmulation. eories and system modeling. out linear graph analysis and optimization concepts. aluation and calculus methods for optimization. analysis and system simulation.	, conc	current		

	Course Outcomes
CO1	Apply system concept of engineering, engineering activity matrix, solve engineering problems and formulate problems.
CO2	Understand black box approach, state theory approach, concepts of linear graph modeling and mathematical modeling.
CO3	Understand black box approach, state theory approach, concepts of linear graph modeling and mathematical modeling.
CO4	Assess feasibility, plan horizon, financial analysis and to understand the concept of model with one and two decision variables.
CO5	Learn the elements of decision problem, utility value and to apply Baye's theorem.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO							
1	Fundamental Concepts and Definition	Fundamental Concepts and Definitions: Apply system concept of engineering, engineering activity matrix, solve engineering problems and formulate problems.	8	CO1							
2	Understand black box approach	Understand black box approach, state theory approach, concepts of linear graphmodeling and mathematical modeling, Data Analytics in Mechanical Process	8	CO2							
3	Analyze path problems	Analyze path problems, network flow problems and to understand the concept and methods of optimization	8	CO3							
4	Assess feasibility	Assess feasibility, plan horizon, financial analysis and to understand the concept of model with one and two decision variables	8	CO4							
5	Learn the elements of decision problem	Learn the elements of decision problem, utility value and to Apply Baye's theorem.	8	CO5							
	Reference Books: Design and Planning of Engineering System: D.D. Meredith, K.V.Wong, R.W. Woodhead, R.R. Worthman, prentice-Hall Inc. Englewood Clifts, New Jersey.										

Design Engineering: J.R. Dixon, Tata McGraw Hill.

Optimization Techniques: S.S. Rao.

System Analysis and Project Management : Devid I, Cleland, William R. King, Mc. Graw Hill.

Engineering Design : Robot Matousck, Blackie and son.

e-Learning Source:

https://www.youtube.com/watch?v=-LiNZYpk870&list=PLm_MSClsnwm_fIdzKR-ARchhAG0KL0iYn

https://www.youtube.com/watch?v=mzWMdZZaHwI&list=PL3D4EECEFAA99D9BE

 $\underline{https://www.youtube.com/watch?v=SHbb9dV-we8\&list=PLBE92469895618E50}$

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-	DO1	DOA	DOA	DO 1	DOF	DOC	DOT	DOO	DOG	DO10	DO11	DO10	DCO1	DECO	DCOO
PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO															
CO1	3	2	1	2		2						3	3	1	1
CO2	2	3	3	2		3						3	2	3	2
CO3	1	3	3	3		3						3	3	2	1
CO4	3	2	3	2		3						3	1	2	1
CO5	2	3	3	3		3						3	3	2	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2024-25								
Course Code	ME421 Title of the Course		CAD & CAM LAB	L	Т	Р	С	
Year	IV Semester		VII	0	0	2	1	
Pre-Requisite	ME421							
Course Objectives	Demonstrate To introduce	e different methods for the fundamentals of	mputer Aided Design methods and procedures. r geometric modeling in CAD. solid modeling. C machine structures and part programming.					

	Course Outcomes						
CO1	To demonstrate the application of SOLIDWORKS.						
CO2	To demonstrate the application MATLAB programming						
CO3	To demonstrate the application of Flexible Manufacturing System.						
CO4	To demonstrate the working of CNC milling and lathe machines.						
CO5	To demonstrate the working and application of 3D printer.						

Exper iment No.	Title of the Experiment	Content of Units (Minimum 10 experiments to be performed)	Contact Hrs.	Mapped CO
1	Solidmodelling Practice	To make the part model, assembly and drawing of the Knuckle joint using solid modelling tools.	2	CO1
2	Solidmodelling Practice	To make the part model, assembly and drawing of the Oldham coupling using solid modelling tools.	2	CO1
3	Introduction to algorithms	Write an Algorithm and program code for Bresenham's line algorithm.	2	CO2
4	Bresenham's circle generating algorithm	Write an Algorithm and program code for Bresenham's circle generating algorithm.	2	CO2
5	Geometric transformations	Write an Algorithm and program code for 2D translation of line/ circle/ rectangle.	2	CO2
6	Introduction to Flexible Manufacturing System	Study of Flexible Manufacturing System & amp; Automation. (ASRS & amp; Industrial Robot)	2	CO3
7	CNC machines sub programs	Write a CNC Sub- Program on CNC lathe Machine/ CNC milling machine.	2	CO4
8	CNC machines contour programs	Write a CNC contour program on CNC lathe Machine/ CNC milling machine.	2	CO4
9	CNC machines turning operation	Write a CNC program and perform turning operation on CNC lathe machine for the given problem.	2	CO4
10	CNC machines milling operation	Write a CNC program and perform milling operation on CNC milling machine for the given problem.	2	CO4
11	3D printer	To study the working of 3D printer and make a job.	2	CO5
e-Lear	ming Source:			
ttps://d	lrive.google.com/drive/folder	rs/1YDPwwHV8tBH9MAA3tOH33EEd2vtgpDnw?usp=share_link_		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	2	3			3	2		3	3	2	2
CO2	3	3	2	3	2	3			3	2		3	3	2	2
CO3	3	3	2	3	2	3			3	2		3	3	2	2
CO4	3	3	2	3	2	3			3	2		3	3	2	2
CO5	3	2	2	2	2	3			2	2		3	3	2	2

j	Name & Sign of Program Coordinator	Sign & Seal of HoD